Mapping Jupiter's Mischief

Channon Visscher

 $^1\mathrm{Dordt}$ University, Sioux Center, IA $^2\mathrm{Space}$ Science Institute, Boulder, CO

Key Points:

1

2

3 4

5

11

6	• Recent Juno results provide updated latitudinal abundance profiles that map the
7	distribution of several key atmospheric species on Jupiter.
8	• Mapping key gases in Jupiter's troposphere characterizes the chemical and dynam-
9	ical processes responsible for Jupiter's banded appearance.
10	• Chemistry in Jupiter's troposphere is tied to element abundances in the deep at-
11	mosphere, providing constraints for Jovian formation models.

 $Corresponding \ author: \ Channon \ Visscher, \ \texttt{channon.visscher@dordt.edu}$

12 Abstract

New results (Grassi et al., 2020) from analysis of Juno Jovian Infrared Auroral Mapper 13 (JIRAM) 4-5 μ m observations provide updated latitudinal abundance profiles and mea-14 surements of the spatial distribution of H₂O, NH₃, PH₃, GeH₄, and AsH₃ in Jupiter's 15 troposphere near the 3-5 bar level. The observed compositional variations provide new 16 constraints on processes shaping chemical abundances in the cloud-forming region of the 17 troposphere, including vertical and horizontal atmospheric mixing, meteorology and cloud 18 formation, transport-induced quenching, and photochemistry. Along with recent results 19 from the Juno Microwave Radiometer (MWR) for NH_3 and H_2O abundances far below 20 the clouds, the JIRAM measurements of key disequilibrium tracer species can also be 21 used to explore the coupled dynamics, chemistry, and bulk composition of Jupiter's deep 22 atmosphere. The heavy element abundance inventory on Jupiter is a key constraint for 23 the development and assessment of giant planet formation models. Combined with prior 24 ground-based, spacecraft, and *in-situ* observations, the Juno results suggest near-uniform 25 $(\sim 2-4\times)$ enhancements over protosolar abundances for several heavy elements in Jupiter's 26 atmosphere, giving new clues about the composition of the material accreted, the tim-27 ing and location of formation, and the internal evolution of Jupiter over the history of 28 the Solar System. 29

³⁰ Plain Language Summary

New results from the Juno spacecraft provide high-resolution measurements of the 31 distribution of several key gases in Jupiter's atmosphere, and show how their abundances 32 vary with latitude. The observed abundance distributions result from a complex tangle 33 of chemical and physical processes, including atmospheric circulation, chemical reactions, 34 and cloud formation that together shape the abundances of chemical species in the tro-35 posphere. Recent infrared and microwave measurements also provide key clues about the 36 chemistry and composition of Jupiter's atmosphere below the clouds and into the deep 37 interior. The new results from the Juno mission thus represent a major step toward com-38 pleting its goal of providing an accurate elemental inventory of Jupiter's deep atmosphere, 39 and deliver new insights into Jupiter's formation and chemical evolution: what is Jupiter 40 made of, and how did it get that way? 41

42 Prelude to Juno

Jupiter is the most massive planet in the Solar System, and played a central role 43 in shaping the formation history, architecture, and composition of the planets. Impor-44 tant clues about early planetary history can thus be found in our understanding of Jupiter's 45 structure and chemical composition. For example, Jupiter consists mostly of hydrogen 46 with a bulk composition roughly similar to that of the Sun, suggesting that Jupiter (and 47 other H-rich giant planets) formed while there was still enough H and He gas in the pro-48 toplanetary disk available for significant accretion (for reviews, see Lunine et al., 2004; 49 Taylor et al., 2004). Moreover, observations of exoplanetary systems showing evidence 50 of planetary migration, along with modern dynamical models, suggest that Jupiter drove 51 planetesimal migration and accretion throughout the early Solar System (e.g., see Gomes 52 et al., 2005; Tsiganis et al., 2005; Helled et al., 2014; D'Angelo & Lissauer, 2018; Ray-53 mond et al., 2018, and references therein). Jupiter thus provides a record of the forma-54 tion and earliest evolution of our own planetary system, and serves as a prototype for 55 similar formation processes in exoplanetary systems. 56

Theoretical models and infrared observations also show that Jupiter emits nearly twice as much energy as it absorbs from the Sun, suggesting a hot, convective interior. For this reason, gas abundances in the troposphere of Jupiter have generally been considered (while accounting for cloud formation) indicative of its bulk composition. A key constraint for Jovian formation models is thus the comparison of model results to the

Figure 1. Jupiter near 56° N as seen by Juno from a distance of 15,500 km during its 13th perijove encounter. The bright clouds are inferred to be high clouds of NH_3 , with darker cloud material located deeper in the atmosphere. JunoCam visible light image with colors exaggerated. Image credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran (CC NC SA).

observed abundances of compounds such as CH_4 , NH_3 , H_2S , and H_2O , etc., taken to rep-62 resent the planetary elemental abundances of the "heavy elements" C, N, S, and the ma-63 jority of planetary O, respectively. For example, *in-situ* measurements of Jupiter's tro-64 posphere by the Galileo Probe Mass Spectrometer (GPMS; e.g., Mahaffy et al., 2000; 65 Wong et al., 2004) showed enhancements in heavy-element-to- H_2 ratios for several el-66 ements (C, N, S, Ar, Kr, Xe) and depletions in others (e.g., Ne, O) relative to the orig-67 inal (or "protosolar") element inventory of the Solar System. In this context, the suc-68 cess of planetary formation and evolution models are measured by their ability to repro-69 duce the observed enrichments and/or depletions. An accurate determination of Jupiter's 70 global element inventory has thus become a major goal of planetary research. 71

However, efforts to determine some representative Jovian composition have posed 72 a challenging task. Jupiter is not a *tame* planet. High clouds of icy NH_3 or storm-driven 73 H_2O clouds obscure deeper atmospheric levels (e.g., see Figure 1). And recent observa-74 tions suggest an atmosphere as variable and tumultuous as the swirling clouds suggest 75 (e.g., de Pater et al., 2016; Bolton et al., 2017; Li et al., 2017; Fletcher, 2017; Antuñano 76 et al., 2019; Fletcher et al., 2020). Although the Galileo Probe provided crucial measure-77 ments of Jupiter's troposphere, it descended into an anomalously dry "hot spot" region 78 (features found along the boundary between the equatorial zone and the north equato-79 rial belt) characterized by low cloud opacity, low abundances of cloud-forming species, 80 high thermal (5 μ m) emission, and a water abundance that was still increasing with depth 81

Figure 2. Averaged latitudinal profiles for H_2O (relative humidity), NH_3 , PH_3 , GeH_4 and AsH_3 (mole fractions) from Grassi et al. (2020) using *Juno* JIRAM observations from the first 15 perijove encounters (PJ1-PJ15). The black curves represent mean abundance values and the gray curves represent the standard deviation over all PJ1-PJ15 profiles. Gaps in the abundance profiles occur at latitudes with high aerosol opacity (corresponding with cloud-thick zones), where measurements of the gas composition are difficult to obtain. See Grassi et al. (2020) for details.

when the probe signal was lost at the 22-bar level (e.g., Wong et al., 2004; Orton et al., 1998; Niemann et al., 1998). So the question remained to what extent the GPMS results for H_2O could be taken as representative of some deep, well-mixed oxygen inventory for Jupiter as a whole. The *Juno* mission was designed to remotely sound the deep atmosphere to hundreds of bars, far beneath the upper veil of clouds, to address such global questions about Jupiter's interior structure and bulk composition – and, in turn, its formation and chemical evolution.

⁸⁹ Juno at Jupiter

Launched in the summer of 2011, Juno entered an eccentric polar orbit of Jupiter 90 in the summer of 2016, swooping closely past the planet (less than 5000 km above the 91 cloud tops) every 53.5 days. The major scientific products of these encounters are now 92 coming to light. New results by Grassi et al. (2020) map the distribution of key atmo-93 spheric gases in Jupiter's atmosphere using data collected by the Jovian Infrared Au-94 roral Mapper (JIRAM) over the first two years of Juno's orbit (August 2016 to Septem-95 ber 2018). The JIRAM observations at 4-5 μ m are sensitive to thermal emission from 96 the cloud-formation region near \sim 3-5 bar (with clouds in silhouette against a bright back-97 ground), along with spectral features from several tropospheric gases. Grassi et al. (2020) 98 performed retrieval analysis on a subset of available JIRAM data, using spectra selected 99 for relatively high radiance, low emission angle, and high resolution. The Juno space-100 craft measurements provide two key advantages over previous observations: very high 101 resolution (courtesy of its close proximity to Jupiter), and coverage at high latitudes us-102 ing similar viewing geometries as for low latitudes (courtesy of its polar orbit). 103

Grassi et al. (2020) provide new latitudinal abundance profiles (summarized in Figure 2) and map the distribution of H_2O , NH_3 , PH_3 , GeH_4 , and AsH_3 in the cloud-forming region of Jupiter's troposphere. The results also allow for new analysis of persistent correlations of gas abundances within discrete regions on Jupiter (e.g., belts and polar re-

gions), and – in the case of water vapor relative humidity – possible associations with 108 zonal wind patterns (Grassi et al., 2020). The observed tropospheric abundances result 109 from a tangle of closely coupled chemical, dynamical, and radiative processes, includ-110 ing vertical and horizontal mixing, meteorology and cloud formation, thermochemical 111 kinetics and disequilibrium, and photochemistry. The Juno results thus provide new con-112 straints for a range of models exploring how such processes conspire to shape the chem-113 ical composition of Jupiter's troposphere. The new results also represent another ma-114 jor step toward completing Juno's goal of mapping key species (including disequilibrium 115 species) to provide an accurate elemental inventory of Jupiter's deep atmosphere. 116

¹¹⁷ Chemical Connections to the Deep

A number of the minor species observed in Jupiter's troposphere (including CO, 118 PH_3 , GeH_4 , and AsH_3) are present in abundances that far exceed those expected from 119 thermodynamic equilibrium. As was first demonstrated for CO (Prinn & Barshay, 1977), 120 this behavior represents vertical mixing from deeper, denser, warmer levels where the 121 species in question has a higher abundance at an equilibrium maintained by fast reac-122 tion kinetics (i.e., chemical timescales are short relative to mixing timescales, $\tau_{\rm chem} <$ 123 $\tau_{\rm mix}$). However, departures from equilibrium can occur at higher, cooler altitudes where 124 convective vertical mixing occurs faster than chemical reactions can maintain equilib-125 rium (i.e., $\tau_{\rm chem} > \tau_{\rm mix}$), effectively "quenching" the abundance of a molecular species 126 at a fixed value throughout the upper troposphere. For most disequilibrium species, the 127 "quench level" for this transition (i.e., $\tau_{\rm chem} \approx \tau_{\rm mix}$) is typically near 600–1000 K (Fegley 128 & Prinn, 1985; Fegley & Lodders, 1994; Visscher & Moses, 2011; Wang et al., 2016). The 129 observed tropospheric abundances of tracer species such as CO, PH₃, GeH₄, and AsH₃ 130 thus provide a window to the dynamics, chemistry, and composition of Jupiter's deep 131 atmosphere down to \sim kilobar levels (e.g., Giles et al., 2017a; Grassi et al., 2020). 132

For example, PH_3 is expected to be the dominant P-bearing phase at high tem-133 peratures in Jupiter's deep atmosphere, but is subject to removal by oxidation and/or 134 condensation at lower temperatures (< 500 K). There has been some debate regarding 135 the identity of the lower temperature P-bearing phase, mostly due differences in ther-136 modynamic data adopted for phosphorus oxides such as P_4O_6 (for discussion, see Feg-137 ley & Lodders, 1994), and various compounds have been considered to replace PH_3 at 138 lower temperatures, including: P_4O_6 (Fegley & Lodders, 1994; Visscher et al., 2006), P_4O_{10} 139 (Borunov et al., 1995), H_3PO_4 (Wang et al., 2016) and/or $NH_4H_2PO_4$ (Fegley & Lod-140 ders, 1994; Visscher et al., 2006; Morley et al., 2018). In any case, there is consensus that 141 disequilibrium PH_3 observed in the troposphere comes from a deep atmospheric source 142 representative of Jupiter's elemental P inventory. However, the observed PH_3 abundance 143 - possibly including the deep abundance – varies as a function of latitude in both 5 μ m 144 (e.g., Drossart et al., 1990; Giles et al., 2015, 2017a; Grassi et al., 2020) and mid-infrared 145 (e.g., Irwin et al., 2004; Fletcher et al., 2009, 2016) observations. Notably, mid-infrared 146 PH_3 values have typically been $\sim 2 \times$ higher than the 5 μ m values, and show an equa-147 torial maximum as high as ~ 2 ppm PH₃ (e.g., see Fletcher et al., 2009, 2016) in the same 148 location as the NH_3 maximum (de Pater et al., 2016; Li et al., 2017). Both PH_3 and NH_3 149 also show minima near 10°N in the JIRAM data (see Figure 2), suggestive of similar dy-150 namical influences. Adopting the ~ 1 ppm PH₃ abundance maximum observed by JIRAM 151 (near the south pole, see Figure 2; Grassi et al., 2020) as a lower limit for the deep PH_3 152 abundance yields a Jovian phosphorus inventory of at least $1.3 \times$ the protosolar value. 153

Germane (GeH₄) is also subject to removal by condensation at temperatures below 700 K yet survives at ~ ppb disequilibrium concentrations into Jupiter's upper troposphere. Because Ge is distributed among several Ge-bearing species at high-temperatures (Fegley & Lodders, 1994), GeH₄ cannot be taken as representative of Jupiter's bulk Ge inventory (note that 1 ppb GeH₄ corresponds to $0.1 \times$ the protosolar Ge abundance). Nevetheless, quenched GeH₄ is expected to show strong sensitivity to the convective mixing rate compared to PH_3 or AsH_3 (Fegley & Prinn, 1985; Fegley & Lodders, 1994; Wang et al., 2016). Noting that convective mixing will be stronger at low latitudes on a rotating planet such as Jupiter (Flasar & Gierasch, 1977; Visscher et al., 2010), Wang et al. (2016) demonstrated that higher GeH_4 abundances would be expected near the equator than near the poles, in agreement with the latitudinal trends observed by JIRAM (e.g., see Figure 2 and Grassi et al., 2020; Giles et al., 2017a, for discussion and comparison of observed trends).

On the other hand, the AsH_3 abundance is expected to be less sensitive to the rate 166 of mixing (Fegley & Lodders, 1994; Wang et al., 2016) and the latitudinal profile of tro-167 pospheric AsH_3 is enigmatic, with an abundance that *increases* toward the poles (see 168 Figure 2; Giles et al., 2017a; Grassi et al., 2020). Although the chemical scale height for 169 each disequilibrium species differs depending upon reaction kinetics and quench condi-170 tions, each is presumably subject to the same convective transport. The unexpected AsH_3 171 profile thus suggests that the chemical processes shaping the AsH₃ abundance remain 172 incompletely understood. As suggested by Giles et al. (2017a), the observed distribu-173 tion is plausibly explained by photolytic destruction of AsH₃ in Jupiter's upper tropo-174 sphere (analogous to NH_3 and PH_3 photochemistry near 200 mbar; Strobel, 1977; Kaye 175 & Strobel, 1983), where higher photolysis rates toward the equator yield less AsH_3 . As-176 suming that AsH₃ is the dominant As-bearing in Jupiter's deep atmosphere (Fegley & 177 Lodders, 1994), the maximum AsH_3 abundance of 0.7 ppb measured by Grassi et al. (2020) 178 suggests an enhancement of $\sim 1.3 \times$ the protosolar value, similar to that observed for PH₃. 179

Jupiter's deep atmospheric water abundance (and more generally, Jupiter's oxy-180 gen inventory) is critical to our understanding of Jupiter's formation as well as dynam-181 ical and chemical processes (such as cloud formation) in Jupiter's troposphere. Prior to 182 Juno, however, the obscuring presence of clouds and other opacity sources have long lim-183 ited our ability to determine the H_2O abundance below the clouds. Earth-based infrared 184 observations must contend with telluric H_2O contamination (e.g., see Bjoraker et al., 2016) 185 2018) whereas centimeter measurements must account for synchroton emission from Jupiter's 186 radiation belts (e.g., de Pater et al., 2016). Moreover, as noted above, it is unclear to 187 what extent near-infrared observations (most sensitive to hot spot regions) or the GPMS 188 measurement ($X_{\rm H_2O} = 420 \pm 140$ ppm, corresponding to $\sim 0.5 \times$ the protosolar H₂O/H₂ 189 ratio) can be taken as representative of the bulk planetary inventory.¹ 190

Given these challenges, several investigators turned to chemical models to estimate 191 the H_2O abundance by considering how water in the deep atmosphere influences the ob-192 served behavior of other species (in particular CO) mixed into the upper troposphere. 193 For example, the ~ 1 ppb CO observed in Jupiter's troposphere (e.g., Bézard et al., 2002; 194 Bjoraker et al., 2018) is far greater (over 20 orders of magnitude) than the equilibrium 195 abundance predicted near the 6-bar level, suggesting rapid vertical mixing from deeper 196 in the atmosphere where CO is more abundant and forms via net reactions such as CH_{4+} 197 $H_2O \rightleftharpoons CO+3H_2$. For a given carbon inventory (characterized by CH₄), the observed 198 (quenched) abundance of CO thus depends upon the rate of reactions that interconvert 199 $CO \rightleftharpoons CH_4$, the strength of convective vertical transport, and the abundance of water in 200 the deep atmosphere: more H_2O yields more CO. 201

Following the approach pioneered by Prinn and Barshay (1977) and Fegley and Prinn (1988), modern numerical studies of H-C-O chemistry in Jupiter's atmosphere use extensive reaction networks to estimate the H₂O abundance based upon CO quench kinetics (e.g., see Visscher et al., 2010; Visscher & Moses, 2011, who estimated 420-2160 ppm

¹ For reference, a "protosolar" atmospheric water abundance is defined here as $X_{\rm H_2O} = 830$ ppm or $X_{\rm H_2O}/X_{\rm H_2} = 9.61 \times 10^{-4}$ using elemental abundances from Lodders (2010) and accounting for the removal of some oxygen into rock (e.g., Visscher et al., 2010). For conversion between mole fraction abundances and element-to-H₂ mixing ratios on Jupiter, a hydrogen abundance of $X_{\rm H_2} = 0.864$ is adopted based upon *Galileo* measurements of the He abundance (Niemann et al., 1998; von Zahn et al., 1998).

 H_2O). More recently, Wang et al. (2015) showed that for a narrower range of rapid mix-206 ing rates expected near equatorial latitudes, the kinetic schemes of Visscher and Moses 207 (2011) and Venot et al. (2012) give 85-640 ppm H₂O and 2500-9300 ppm H₂O, respec-208 tively. Full resolution of model differences (caused by differences in adopted rates of key reactions in the $CO \rightleftharpoons CH_4$ reaction scheme) may require improved understanding of the 210 dynamical behavior of Jupiter's deep atmosphere and/or new studies that explore whether 211 the reaction networks adapted from H-C-O combustion experiments under oxidizing con-212 ditions will behave consistently in hydrogen-rich planetary environments (e.g., see Moses 213 et al., 2011; Venot et al., 2012, 2020; Moses, 2014; Wang et al., 2015, for further discus-214 sion). In the meantime, chemical models of the deep atmosphere will also be improved 215 by new observational constraints on Jupiter's composition far below the clouds. 216

217 Looking Below the Clouds

The spatial distribution of cloud-forming species such as NH_3 and H_2O mapped 218 by JIRAM provide information about the meteorological processes that affect their abun-219 dances in the cloud-forming region of Jupiter's troposphere (≤ 10 bar). For example, 220 the observed H_2O relative humidity is highly variable with latitude (see Figure 2), with 221 local enhancements in water vapor that appear to be associated with cyclonic regions 222 consistent with models of moist convection (e.g., see Dowling & Gierasch, 1989; Roos-223 Serote et al., 2000; Ingersoll et al., 2004; Fletcher et al., 2017; Giles et al., 2015; Grassi 224 et al., 2020). The distribution of NH_3 likewise shows abundance variations (see Figure 225 2) shaped by vertical and horizontal mixing, including an enhancement along the edges 226 of the equatorial zone, a strong depletion near 10° N (consistent with microwave mea-227 surements; see Li et al., 2017, and discussion below), and longitudinal variations (includ-228 ing NH₃-rich plumes) near hot spot latitudes (e.g., see de Pater et al., 2016; Giles et al., 229 2017b; Li et al., 2017; Fletcher et al., 2016, 2020; Grassi et al., 2020). 230

While the JIRAM results provide new abundance estimates in the cloud-forming 231 region of Jupiter's atmosphere, recent results from Juno Microwave Radiometer (MWR) 232 measurements provide complementary estimates of the NH_3 and H_2O abundances well 233 below the clouds (e.g., see Janssen et al., 2017). Because NH₃ absorbs more strongly than 234 H_2O , MWR determinations of the water abundance require an accurate estimate of the 235 NH_3 abundance profile, which is best constrained in the equatorial zone (e.g., Li et al., 236 2017). Using this approach (for 351 ppm NH₃ or 2.5× protosolar N), Li et al. (2020) obtain a deep H₂O abundance of 2500^{+2200}_{-1600} ppm (or $3.0^{+2.6}_{-1.9}$ × protosolar H₂O) in the equa-237 238 torial zone, confirming that the GPMS measurement (420 ppm) was not representative 239 of Jupiter's deep water inventory. Combined with prior ground-based, spacecraft, and 240 *in-situ* observations, the Juno results thus suggest roughly uniform ($\sim 2-4 \times$) enhance-241 ments over protosolar abundances for several heavy elements in Jupiter's atmosphere. 242

The deep abundance measurements of the major cloud-forming species (Li et al., 243 2020) along with disequilibrium abundances (Grassi et al., 2020) can also be used to iden-244 tify connections between the upper troposphere and the deep atmosphere, and to explore 245 related questions about which chemical pathways, atmospheric motions, and meteoro-246 logical processes are shaping the observed abundances of tropospheric chemical species: 247 how deep does chemical variability extend? To what extent do deep atmospheric abun-248 dances represent bulk element inventories? For example, the MWR results show spatial 249 variations in NH_3 extending to at least the ~ 50 bar level (e.g., see Li et al., 2017; Bolton 250 et al., 2017; Ingersoll et al., 2017) with a deep abundance (\sim 360 ppm) less than that ob-251 served by GPMS (570 ppm; Wong et al., 2004). In addition, high-resolution Juno mea-252 surements of Jupiter's gravity field suggest the presence of a diluted core and the pos-253 sibility that the heavy element inventory is not uniformly mixed throughout the planet 254 as a whole (e.g., see Wahl et al., 2017; Debras & Chabrier, 2019), presenting new chal-255 lenges for inferring the chemical consequences of Jupiter's atmospheric evolution. 256

Nevertheless, the observed Jovian water inventory provides a key constraint on the 257 composition of the material accreted, the timing and location of formation, and the in-258 ternal chemical and structural evolution of Jupiter over the history of the Solar System. 259 A bulk oxygen inventory similar to that of other heavy elements (as suggested by Juno 260 MWR results) calls into question formation scenarios that predict either very large or 261 very small water abundances, whereas models that predict roughly similar heavy-element 262 enhancements invite a closer look (e.g., see Owen et al., 1999; Lodders, 2004; Guillot & 263 Hueso, 2006; Wong et al., 2008; Mousis et al., 2019, for references and further discus-264 sion). The new results also raise ongoing questions about core-accretion and gravitational 265 collapse during giant planet formation: should we consider Jupiter to be uniformly en-266 riched in heavy elements? Or instead depleted in H and He? Our understanding of gi-267 ant planet formation within an evolving protoplanetary disk – informed by ongoing ground-268 based and Juno observations of key species in Jupiter's troposphere – will continue shape 269 how these questions are addressed both inside and outside of our own planetary system. 270

271 Acknowledgments

I thank the two anonymous reviewers for their reviews and many constructive suggestions that were incorporated into the commentary. No new data were generated in the

preparation of this manuscript. Data used for the abundance profiles in Figure 2 are in-

cluded in Grassi et al. (2020) and the full JIRAM datasets can be found in Grassi (2019).

276 **References**

277

278

279

280

- Antuñano, A., Fletcher, L. N., Orton, G. S., Melin, H., Milan, S., Rogers, J., ...
- Giles, R. (2019, September). Jupiter's Atmospheric Variability from Long-term Ground-based Observations at 5 μ m. Astronomical Journal, 158(3), 130. doi: 10.3847/1538-3881/ab2cd6
- Bézard, B., Lellouch, E., Strobel, D., Maillard, J.-P., & Drossart, P. (2002, September).
 Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources. *Icarus*, 159(1), 95-111. doi: 10.1006/icar.2002.6917
- Bjoraker, G. L., de Pater, I., Wong, M. H., Adamkovics, M., Hewagama, T., & Hesman, B. (2016, October). Volatile Abundances and the Deep Cloud Structure
 in Jupiter's Great Red Spot. In *Aas/division for planetary sciences meeting abstracts #48* (p. 508.05).
- Bjoraker, G. L., Wong, M. H., de Pater, I., Hewagama, T., Ádámkovics, M., &
 Orton, G. S. (2018, September). The Gas Composition and Deep Cloud Structure of Jupiter's Great Red Spot. Astronomical Journal, 156(3), 101. doi: 10.3847/1538-3881/aad186
- Bolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., ...
 Wilson, R. (2017, May). Jupiter's interior and deep atmosphere: The initial
 pole-to-pole passes with the Juno spacecraft. *Science*, 356(6340), 821-825. doi:
 10.1126/science.aal2108
- Borunov, S., Dorofeeva, V., Khodakovsky, I., Drossart, P., Lellouch, E., & Encrenaz, T. (1995, February). Phosphorus chemistry in atmosphere of Jupiter: A
 reassessment. *Icarus*, 113, 460-464. doi: 10.1006/icar.1995.1036
- D'Angelo, G., & Lissauer, J. J. (2018). Formation of Giant Planets. In *Handbook of exoplanets* (p. 140). doi: 10.1007/978-3-319-55333-7_140
- de Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. (2016, June). Peering through Jupiter's clouds with radio spectral imaging. *Science*, 352(6290), 1198-1201. doi: 10.1126/science.aaf2210
- Debras, F., & Chabrier, G. (2019, February). New Models of Jupiter in the Context
 of Juno and Galileo. Astrophysical Journal, 872(1), 100. doi: 10.3847/1538
 -4357/aaff65
- Dowling, T. E., & Gierasch, P. J. (1989, June). Cyclones and Moist Convection

308	on Jovian Planets. In Bulletin of the American Astronomical Society (Vol. 21,
309	p. 946).
310	Drossart, P., Lellouch, E., Bezard, B., Maillard, J. P., & Tarrogo, G. (1990, Jan-
311	uary). Jupiter: Evidence for a Phosphine Enhancement at high Northern
312	latitudes. Icarus, $83(1)$, 248-253. doi: 10.1016/0019-1035(90)90018-5
313	Fegley, B., Jr., & Lodders, K. (1994, July). Chemical models of the deep atmo-
314	spheres of Jupiter and Saturn. Icarus, 110, 117-154. doi: 10.1006/icar.1994
315	.1111
316	Fegley, B., Jr., & Prinn, R. G. (1985, December). Equilibrium and nonequilib-
317	rium chemistry of Saturn's atmosphere - Implications for the observability
318	of PH_3 , N_2 , CO , and GeH_4 . Astrophysical Journal, 299, 1067-1078. doi:
319	10.1086/163775
320	Fegley, B., Jr., & Prinn, R. G. (1988, January). Chemical constraints on the water
321	and total oxygen abundances in the deep atmosphere of Jupiter. Astrophysical
322	Journal, 324, 621-625. doi: 10.1086/165922
323	Flasar, F. M., & Gierasch, P. J. (1977). Eddy diffusivities within Jupiter. In
324	A. V. Jones (Ed.), <i>Planetary atmospheres</i> (p. 85). Ottawa: Royal Society of
325	Canada.
326	Fletcher, L. N. (2017, May). Cycles of activity in the Jovian atmosphere. <i>Geophysi</i> -
327	cal Research Letters, 44(10), 4725-4729. doi: 10.1002/2017GL073806
328	Fletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin,
329	P. G. J., & Encrenaz, T. (2016, November). Mid-infrared mapping of Jupiter's
330	temperatures, aerosol opacity and chemical distributions with IRTF/TEXES.
331	Icarus, 278, 128-161. doi: 10.1016/j.icarus.2016.06.008
332	Fletcher, L. N., Orton, G. S., Greathouse, T. K., Rogers, J. H., Zhang, Z., Oya-
333	Iuso, F. A., Adriani, A. (2020, March). Jupiter's Equatorial Plumes and List Spota: Spotal Mapping from Camini /TEXES and Jupa /MWD
334	The spots spectral mapping from Germin (TEAES and Juno) with \mathbf{R} . $arxiv$
	$\alpha = \alpha m m m \pi \alpha = \alpha m \pi \pi \pi m m m m m m m m m m m m m m m$
335	e-prints, arAiv:2004.00072.
335 336	<i>e-prints</i> , arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. L. & Vedovato, M. (2017, April) Moist convection and the 2010-
335 336 337 338	<i>e-prints</i> , arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Learns</i> 286 94-117 doi:
335 336 337 338 339	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/i.icarus.2017.01.001
335 336 337 338 339 340	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August).
335 336 337 338 339 340 341	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIBS. <i>Icarus</i>, 202(2), 543-564.
335 336 337 338 339 340 341 342	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023
335 336 337 338 339 340 341 342 343	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure
335 336 337 338 339 340 341 342 343 344	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec-
335 336 337 338 339 340 341 342 343 344 345	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030
 335 336 337 338 339 340 341 342 343 344 345 346 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability
335 336 337 338 339 340 341 342 343 344 345 345 346 347	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus,
335 336 337 338 339 340 341 342 343 344 345 346 347 348	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023
335 336 337 338 339 340 341 342 343 344 345 345 345 345 345 345 345	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b,
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. <i>Icarus</i>, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. <i>Geophysical Research Letters</i>, 44 (21), 10,838-10,844. doi:
335 336 337 338 339 340 341 342 343 344 345 344 345 346 347 348 349 350 351 352	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010- 2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spec- troscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 	 <i>e-prints</i>, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. <i>Icarus</i>, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. <i>Geophysical Research Letters</i>, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. <i>Icarus</i>, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. <i>Geophysical Research Letters</i>, 44(21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. <i>Nature</i>, 435(7041), 466-469. doi: 10.1038/nature03676
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 	 e-prints, arXiv:2004.00012. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435 (7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper tropo-
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435 (7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper troposphere from Juno JIRAM data (PJ1-15). Mendeley Data, v1.
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44(21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435(7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper troposphere as inferred from Juno JIRAM data (PJ1-15). Mendeley Data, v1. (http://dx.doi.org/10.17632/cjs32jv68g.1)
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. <i>Icarus</i>, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. <i>Icarus</i>, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. <i>Icarus</i>, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. <i>Icarus</i>, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. <i>Geophysical Research Letters</i>, 44(21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. <i>Nature</i>, 435(7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper troposphere as inferred from Juno JIRAM data (PJ1-15). Mendeley Data, v1. (http://dx.doi.org/10.17632/cjs32jv68g.1) Grassi, D., Adriani, A., Mura, A., Atreya, S. K., Fletcher, L. N., Lunine, J. I.,
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH4, AsH3 and PH3. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44 (21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435 (7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper troposphere as inferred from Juno JIRAM data (PJ1-15). Mendeley Data, v1. (http://dx.doi.org/10.17632/cjs32jv68g.1) Grassi, D., Adriani, A., Mura, A., Atreya, S. K., Fletcher, L. N., Lunine, J. I., Turrini, D. (2020, April). On the Spatial Distribution of Minor Species in Iupiter's troposphere are the available of the transectory of the spatial Distribution of Minor Species in Iupiter's Letter and State Internet and State Internet
 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 	 e-prints, arXiv:2004.00072. Fletcher, L. N., Orton, G. S., Rogers, J. H., Giles, R. S., Payne, A. V., Irwin, P. G. J., & Vedovato, M. (2017, April). Moist convection and the 2010-2011 revival of Jupiter's South Equatorial Belt. Icarus, 286, 94-117. doi: 10.1016/j.icarus.2017.01.001 Fletcher, L. N., Orton, G. S., Teanby, N. A., & Irwin, P. G. J. (2009, August). Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus, 202(2), 543-564. doi: 10.1016/j.icarus.2009.03.023 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2015, September). Cloud structure and composition of Jupiter's troposphere from 5- μ m Cassini VIMS spectroscopy. Icarus, 257, 457-470. doi: 10.1016/j.icarus.2015.05.030 Giles, R. S., Fletcher, L. N., & Irwin, P. G. J. (2017a, June). Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH₄, AsH₃ and PH₃. Icarus, 289, 254-269. doi: 10.1016/j.icarus.2016.10.023 Giles, R. S., Fletcher, L. N., Irwin, P. G. J., Orton, G. S., & Sinclair, J. A. (2017b, November). Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy. Geophysical Research Letters, 44(21), 10,838-10,844. doi: 10.1002/2017GL075221 Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005, May). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435(7041), 466-469. doi: 10.1038/nature03676 Grassi, D. (2019). Content of minor species in Jupiter's upper troposphere as inferred from Juno JIRAM data (PJ1-15). Mendeley Data, v1. (http://dx.doi.org/10.17632/cjs32jv68g.1) Grassi, D., Adriani, A., Mura, A., Atreya, S. K., Fletcher, L. N., Lunine, J. I., Turrini, D. (2020, April). On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Georemetrical planets. Inferred From Juno JIRAM Data. Journal of Georemetrical Sciencesch (Menetrical Bearsch (Menetrical Decoremetrical Distribution of Minor Species in Jupiter's Tropo

363 364 365	Guillot, T., & Hueso, R. (2006, March). The composition of Jupiter: sign of a (rel- atively) late formation in a chemically evolved protosolar disc. <i>Monthly Notices</i> of the Royal Astronomical Society, 367(1), L47-L51. doi: 10.1111/j.1745-3933
366	.2006.00137.x
367	Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Navakshin,
368	S Boss, A. P. (2014, January). Giant Planet Formation, Evolu-
360	tion and Internal Structure In H Beuther R S Klessen C P Dulle-
370	mond & T. Henning (Eds.) Protostars and Planets VI (p. 643)
370	$10.2458/_{272}$ uppross 0780816521240 ch028
3/1	Incorrectly A. D. Adumitropic V. Allicon M. D. Atrove C. Dollotti, A. A. Dolton
372	Ingerson, A. F., Adumitioale, V., Amson, W. D., Atteya, S., Denotti, A. A., Doiton,
373	5. J., Stelles, P. G. (2017, August). Implications of the animoma
374	distribution on Jupiter from 1 to 100 bars as measured by the Juno mi-
375	crowave radiometer. Geophysical Research Letters, 44 (15), 1010-1085. doi: 10.1009/0017CL074077
376	10.1002/2017GL074277
377	Ingersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sanchez-
378	Lavega, A., Vasavada, A. R. (2004). Dynamics of Jupiter's atmosphere.
379	In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The
380	Planet, Satellites and Magnetosphere (p. 105-128). Cambridge: Cambridge
381	Univ. Press.
382	Irwin, P. G. J., Parrish, P., Fouchet, T., Calcutt, S. B., Taylor, F. W., Simon-
383	Miller, A. A., & Nixon, C. A. (2004, November). Retrievals of jovian
384	tropospheric phosphine from Cassini/CIRS. <i>Icarus</i> , 172, 37-49. doi:
385	10.1016/j.icarus.2003.09.027
386	Janssen, M. A., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J.,
387	Wang, C. C. (2017, November). MWR: Microwave Radiometer for the
388	Juno Mission to Jupiter. Space Science Reviews, 213(1-4), 139-185. doi:
389	10.1007/s11214-017-0349-5
390	Kaye, J. A., & Strobel, D. F. (1983, June). HCN formation on Jupiter: The cou-
391	pled photochemistry of ammonia and acetylene. Icarus, 54(3), 417-433. doi: 10
392	.1016/0019- $1035(83)90238$ - 5
393	Li, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., Zhang, Z.
394	(2020). The water abundance in Jupiter's equatorial zone. Nature Astron doi:
395	10.1038/s41550-020-1009-3
396	Li, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V.,
397	Williamson, R. (2017, June). The distribution of ammonia on Jupiter from
398	a preliminary inversion of Juno microwave radiometer data. <i>Geophysical Re-</i>
399	search Letters, 44(11), 5317-5325. doi: 10.1002/2017GL073159
400	Lodders, K. (2004, August). Jupiter formed with more tar than ice. Astrophysical
401	Journal, 611, 587-597. doi: 10.1086/421970
402	Lodders, K. (2010, January). Solar System Abundances of the Elements. Astro-
402	nbusics and Space Science Proceedings 16 379 doi: 10.1007/978-3-642-10352
403	-0.8
405	Lunine I I Coradini A Cautier D Owen T C & Wuchterl C (2004) The
405	origin of Jupitor In F. Bagonal, T. F. Dowling, & W. B. McKinnon (Eds.)
406	Juniter The Planet Satellites and Magnetoenberg (p. 10.34) Combridge:
407	Cambridge Univ. Press
408	Mahaffy D. D. Niemann H. D. Almant A. Atrova S. K. Domiels I. Donahua
409	T M Owen T C (2000 June) Noble and shundance and isotone retice.
410	in the atmosphere of Junitar from the Calilee Dashe Mass Spectrometer Jour
411	nal of Coophysical Research 105, 15061 15079, doi: 10.1020/1000 IE001224
412	Monlow C. V. Shomon A. I. Allong K. N. Marlow M. S. Eshanter, I. K. Willow
413	C Biorolog C I (2018 May) An I Dand Creating of the Cellert
414	Drown Dworf Actnonhusical Journal 050 07 Jei: 10.2047/1520.4257/
415	brown Dwarr. Astrophysical journal, 000 , 97. (001: 10.3847/1538-4357/
416	aautou

⁴¹⁷ Moses, J. I. (2014, March). Chemical kinetics on extrasolar planets. *Philosophical*

418	Transactions of the Royal Society of London Series A, 372(2014), 20130073-
419	20130073. doi: 10.1098/rsta.2013.0073
420	Moses, J. I., Visscher, C., Fortney, J. J., Showman, A. P., Lewis, N. K., Griffith,
421	C. A., Freedman, R. S. (2011, August). Disequilibrium carbon, oxygen,
422	and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b.
423	Astrophysical Journal, 737, 15.
424	Mousis, O., Ronnet, T., & Lunine, J. I. (2019, April). Jupiter's Formation in the
425	Vicinity of the Amorphous Ice Snowline. Astrophysical Journal, $875(1)$, 9. doi:
426	10.3847/1538-4357/ab0a72
427	Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A.,
428	Harpold, D. N., Way, S. H. (1998, September). The composition of the
429	Jovian atmosphere as determined by the <i>Galileo</i> probe mass spectrometer.
430	Journal of Geophysical Research, 103, 22831-22846. doi: 10.1029/98JE01050
431	Orton, G. S., Fisher, B. M., Baines, K. H., Stewart, S. T., Friedson, A. J., Ortiz,
432	J. L., Parija, K. C. (1998, September). Characteristics of the Galileo
433	probe entry site from Earth-based remote sensing observations. Journal of
434	Geophysical Research, 103, 22791-22814. doi: 10.1029/98JE02380
435	Owen, T., Mahaffy, P., Niemann, H. B., Atreya, S., Donahue, T., Bar-Nun, A., & de
436	Pater, I. (1999, November). A low-temperature origin for the planetesimals
437	that formed Jupiter. Nature, 402, 269-270.
438	Prinn, R. G., & Barshay, S. S. (1977, December). Carbon monoxide on Jupiter and
439	implications for atmospheric convection. Science, 198, 1031-1034.
440	Raymond, S. N., Izidoro, A., & Morbidelli, A. (2018, December). Solar Sys-
441	tem Formation in the Context of Extra-Solar Planets. arXiv e-prints,
442	arXiv:1812.01033.
443	Roos-Serote, M., Vasavada, A. R., Kamp, L., Drossart, P., Irwin, P., Nixon, C., &
444	Carlson, R. W. (2000, May). Proximate humid and dry regions in Jupiter's
445	atmosphere indicate complex local meteorology. Nature, $405(6783)$, 158-160.
446	doi: 10.1038/35012023
447	Strobel, D. F. (1977, June). NH3 and PH3 photochemistry in the Jovian atmo-
448	sphere. Astrophysical Journal Letters, 214, L97-L99. doi: 10.1086/182450
449	Taylor, F. W., Atreya, S. K., Encrenaz, T., Hunten, D. M., Irwin, P. G. J., & Owen,
450	T. C. (2004). The composition of the atmosphere of Jupiter. In F. Bagenal,
451	T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The Planet, Satellites and
452	Magnetosphere (p. 59-78). Cambridge: Cambridge Univ. Press.
453	Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005, May). Origin
454	of the orbital architecture of the giant planets of the Solar System. <i>Nature</i> ,
455	435(7041), 459-461. doi: $10.1038/nature03539$
456	Venot, O., Cavalié, T., Bounaceur, R., Tremblin, P., Brouillard, L., & Lhous-
457	saine Ben Brahim, R. (2020, February). New chemical scheme for gi-
458	ant planet thermochemistry. Update of the methanol chemistry and new
459	reduced chemical scheme. Astronomy & Astrophysics, 634, A78. doi:
460	10.1051/0004- $6361/201936697$
461	Venot, O., Hébrard, E., Agúndez, M., Dobrijevic, M., Selsis, F., Hersant, F.,
462	Bounaceur, R. (2012, October). A chemical model for the atmosphere of hot
463	Jupiters. Astronomy & Astrophysics, 546, A43. doi: 10.1051/0004-6361/
464	201219310
465	Visscher, C., Lodders, K., & Fegley, B., Jr. (2006, September). Atmospheric Chem-
466	istry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur
467	and Phosphorus. Astrophysical Journal, 648, 1181-1195. doi: 10.1086/506245
468	Visscher, C., & Moses, J. I. (2011, September). Quenching of Carbon Monoxide and
469	Methane in the Atmospheres of Cool Brown Dwarfs and Hot Jupiters. Astro-
470	physical Journal, 738(1), 72. doi: 10.1088/0004-637X/738/1/72
471	Visscher, C., Moses, J. I., & Saslow, S. A. (2010, October). The deep water abun-
472	dance on Jupiter: New constraints from thermochemical kinetics and diffusion

473	modeling. <i>Icarus</i> , 209(2), 602-615. doi: 10.1016/j.icarus.2010.03.029
474	von Zahn, U., Hunten, D. M., & Lehmacher, G. (1998, September). Helium in
475	Jupiter's atmosphere: Results from the Galileo probe helium interferome-
476	ter experiment. Journal of Geophysical Research, 103, 22815-22830. doi:
477	10.1029/98JE00695
478	Wahl, S. M., Hubbard, W. B., Militzer, B., Guillot, T., Miguel, Y., Movshovitz, N.,
479	Bolton, S. J. (2017, May). Comparing Jupiter interior structure models to
480	Juno gravity measurements and the role of a dilute core. Geophysical Research
481	Letters, $44(10)$, 4649-4659. doi: $10.1002/2017$ GL073160
482	Wang, D., Gierasch, P. J., Lunine, J. I., & Mousis, O. (2015, April). New insights on
483	Jupiter's deep water abundance from disequilibrium species. Icarus, 250, 154-
484	164. doi: 10.1016/j.icarus.2014.11.026
485	Wang, D., Lunine, J. I., & Mousis, O. (2016, September). Modeling the disequilib-
486	rium species for Jupiter and Saturn: Implications for Juno and Saturn entry
487	probe. Icarus, 276, 21-38. doi: 10.1016/j.icarus.2016.04.027
488	Wong, M. H., Lunine, J. I., Atreya, S. K., Johnson, T., Mahaffy, P. R., Owen, T. C.,
489	& Encrenaz, T. (2008, January). Oxygen and Other Volatiles in the Giant
490	Planets and their Satellites. Reviews in Mineralogy and Geochemistry, $68(1)$,
491	219-246. doi: 10.2138/rmg.2008.68.10
492	Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C. (2004,
493	September). Updated <i>Galileo</i> probe mass spectrometer measurements of car-
494	bon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171, 153-170. doi: 10
495	.1016/j.icarus.2004.04.010